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A FRAMEWORK FOR THE DETECTION OF A TARGET
OF UNKNOWN VELOCITY

1. INTRODUCTION

A basic problem in detection theory is that of detecting a target of unknown velocity. In each
resolution cell of a pulsed radar, a detector is applied to determine whether interference only is
present (Ho) or a (target) signal is also present (Hj). The interference is composed of the sum of
thermal noise and clutter. Generally three signal parameters are not known a priori: amplitude, phase,
and Doppler frequency. When the distribution of these variables is known a priori, the resulting
hypothesis test can be solved through the Neyman-Pearson test. In this case, a likelihood ratio is aver-
aged over the random parameters [1,2]. Although the resulting test satisfies the theoretical require-
ments of optimality, its complexity renders it too difficult to implement. Suboptimal methods are
employed to approximate the performance of the average-likelihood ratio.

The generalized likelihood ratio test (GLRT) combines maximum likelihood estimates of the
unknown parameters with the likelihood ratio [3]. This is discussed in Section 2, Eq. (6) for the radar
problem. Essentially Eq. (6) requires finding the maximum over frequency of the magnitudes of the
outputs of linear filters. Such a test is also difficult to implement because the maximization is over all
possible values of frequency. Suppose the frequencies over which the maximization takes place are
partitioned into a finite discrete set fl, f2,... , fp , the resulting test (finite constrained GLRT or
CGLRT) now requires evaluation of only P linear filters. If P is low, the implementation requires
substantially less hardware compared to the unconstrained test or GLRT. However, such a test may
fail to perform close to what can optimally be achieved. Under such a constraint on the number of
filters, it is necessary to find alternative means for designing filters that perform close to what can
optimally be achieved. When the number of retuns N is small, a single filter may suffice to approxi-
mate the performance of the cumbersome average-likelihood test. These single filters are commonly
referred to as moving target indicators (MTIs). Heuristically, the clutter is notched around zero
Doppler, while moving targets and thermal noise are passed. For larger N, single filters are not as
effective as multiple filters that can also integrate the target out of the thermal noise.

The design of single nonrecursive filters for low N is presently based on a technique first
developed by Emerson and later expanded by Capon [4,5]. This procedure minimizes the interfer-
ence output power or equivalently, maximizes the average signal to interference (SIR) ratio at the out-
put of the filter when the target Doppler shift is uniformly distributed over all values [6]. The
interference consists of the sum of thermal noise and clutter and typically is dominated by the clutter.
The eigenvector corresponding to the minimum eigenvalue of the covariance matrix of the interfer-
ence is the weight to be used in the filter. The interference output energy of such a (normalized)
filter is the minimum eigenvalue of the covariance matrix of the interference. Andrews [7] has
solved the design for multiple filters based on this criterion.

Although Emerson's criterion works well for many typical-interference power spectra, it fails
when the power spectra are modified in other applications. The problems take the form of holes in the
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Doppler coverage whereby certain target speeds cannot be detected. This is illustrated in Appendix
A. Additionally, Emerson's procedure is unable to provide a desired target velocity response weight-
ing. This latter problem has been addressed by modifying Emerson's filter by quadratic program-
ming [8].

The limitations seen in Appendix A are inherent to the form of the criteria as discussed in Sec-
tion 2. The purpose of this report is to present a criterion that does not have these limitations and
produces filters with desirable characteristics. This criterion is presented in Section 3. In Section 4
the criterion is applied to the radar problem, and an equation is derived for the design of filters. This
result is used in Section 5 to design single filters for small N. Comparisons are made with Emerson's
method. In Section 6, multiple filters are constructed and the results are compared with Andrews'
method and the CGLRT. In Section 7, the robustness of filters is examined relative to the clutter to
thermal noise ratio C/No and the normalized spectral width of the clutter. The results are summar-
ized in Section 8.

2. DEFINITIONS

The classical hypothesis testing problem encountered when trying to discriminate a moving tar-
get from interference is represented as

HO: Y = X

, ~~~~~~(1)

H 1 :Y=X+seiOSs >O =:

ej(N - 1)0

where N denotes the dimension. The signal vector is S. The vector X consists of the sum of thermal
noise and clutter and is assumed to have zero mean and a Gaussian distribution. A covariance matrix
R associated with X is defined as Rjk = E(xxk), where * denotes complex conjugate. The diagonal
elements of R are fixed at o2, which is the sum of the thermal and clutter energy per component.
The unknown constant phase O of the received signal is assumed to have a uniform distribution in the
interval [0, 2]. The Doppler frequency is also assumed random with a uniform distribution in the
interval [0, 27r]. The signal amplitude s is assumed to be greater than zero; the prior distribution of s
is unknown. The probability of Y given s,0,0 assuming the thermal noise is Gaussian distributed is

P(Y IS, 00) = 1 e-(Y-sejOS)TR-(Y- seiOS)* (2)
J_)NIR I

where T denotes vector transpose. The likehood ratio is,

L(Y I sAi) = P I,') (3)

The optimal test as discussed in Section 1 is the Neyman-Pearson or average-likelihood ratio test
[9] that compares the average-likelihood with a threshold. The average likelihood can be written as

2
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L(Y I s) = I L(Y s, ,O)P(b) P(O)ddO
-~ - 00

= s 2w e s'S T RI'S*Io(2s I yTR-S*l) 1 d (4)

This detector is difficult to implement. The test can be approximated and considerably
simplified by using the GLRT that compares

maxL(Y s, 0,0) (5)
sq,0

to a threshold. This can be simplified for our problem to

6(Y) =i0 or if maxe K(8) I Y TR-S*I =X (6)

where K(O) = 1/ 5 T R -1S* . This test has a number of desirable properties when the frequency 0
is fixed, (1) it can be accomplished by taking the magnitude of a linear filter, (2) it is equivalent to
the average likelihood test in Eq. (4) hence is optimal for fixed frequency, and (3) it possesses the
desirable property of being uniformly most powerful (UMP) with respect to the unknown amplitudes.
Although methods exist for finding the maximum of the above equation over 0, they are difficult to
implement. Estimation methods for finding for a similar problem are given in Ref. 10. However,
if YTR -1S* is implemented for each 0, a matched filter needs to be built or evaluated digitally for
each 0. This requires an infinite number of filters. Therefore the test is typically approximated by a
finite number of filters. In this case each filter must cover an interval of frequencies . Degradation,
relative to the infinite bank of filters, Eq. (6), will occur at frequencies where the finite filters become
mismatched. An optimality or design criterion to measure this degradation can be defined, and new
coefficients can be determined. The amount of the deterioration with frequency can vary greatly,
depending on the filters used, the covariance matrix, and on the length N. The best filter design when
the number of filters is limited along with the associated design criteria is paramount to performance
the cost.

An optimal criterion that results from hypothesis testing is the maximum of the average proba-
bility of detection (Pd) over the frequency range. For independent and identically distributed (IID)
Gaussian interference with a Raleigh distribution on the amplitudes, Brennan et al. [1] show that the
average likelihood ratio test (which maximizes the average probability of detection) and the general-
ized likelihood ratio test perform in nearly the same manner. Little has been done to design single
filters when the criterion of maximizing the average probability of detection is desired when corre-
lated interference is present. In fact this is not a good criterion. Since the problem of correlated
Gaussian interference, Pd may range over several orders of magnitude depending on the frequency of
the target. Hence an average of these values over the frequency range is strongly dominated by the
largest values. The frequencies where the largest values occur may be over a narrow interval that may
not even be considered important. The second criterion that predominates in the literature is the one
of Emerson, which consists of minimizing the average interference power at the output of the filter.
The problems associated with this criterion are discussed in Appendix A.
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An optimal criterion is needed that can be used to design either a single filter or a bank of filters
that do not suffer the limitations of the previous methods. The properties that we consider necessary
for the criterion to satisfy are the following:

* The criterion should accurately reflect the degradation of the desired filters relative to what
can be achieved in an optimal sense;

* The criterion should be broad enough to allow parameters of the design (such as number of
filters, positioning of the filters, etc.) to be varied;

* The criterion should be capable of being weighted to take a particular desired profile or cost
function into consideration.

For the criterion to reflect the degradation of the bank of filters, a suitable distance measure
must be defined. An appealing indicator at a particular frequency is Pd for a given probability of
false alarm (Pja)* Obviously we would like Pd to be as close to what can be optimally achieved at a
given a Pfa To determine what values are actually close, an energy function can be introduced. This
function should tell us how much extra energy is needed for a suboptimal processor to perform as
well as an optimal processer as a function of frequency. Recently, Compernolle [11] has brought to
attention a distance measure for use in speech recognition for measuring the difference between power
spectrums. This measureis based upon the difference of the two power spectra in the log domain.
Similarly, the radar engineer is interested in the signal energy and noise energy expressed in deci-
bels. The reason for preferring decibels over absolute energy values relates to the radar range equa-
tion and the exponential nature of the probability of error equations. A more relevant distance meas-
ure is based on the log energy. In effect, it is desirable to know as a function of 0 the necessary sig-
nal energy in dB required of the suboptimal processor to perform as well as the optimal processor.
A criterion based on this measure is introduced and used in the remainder of the report.

3. MINIMAX LOG ENERGY CRIERIA (MLE)

A general optimal criterion that satisfies the properties we required of an optimal criterion is
now presented in Section 2. The input SIR s 2 /o 2 is denoted as y.

Suppose, for each frequency 0 E [0, 2] the Neyman-Pearson design criteria is used to find the
most powerful tests 67(Y), where -y denotes the input SIR, under the constraint Pfa(6(Y)) = cX.
Then any rule 67(Y) will, by the Neyman-Pearson lemma, satisfy

Pd(6b(Y) I e = ) < Pd(AY(Y) I e = 0); (7)

whenever Pfa(6(Y) I e = 0) s a, e denotes the actual frequency of the signal.* The rule &•(Y) is
assumed to be of the form

Il >

6(Y) t or 1 if maxi CjTY = , (8)

We assume Pd. Pfa can be written in terms of y to not depend on s or a separately.
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where i = 1, . . , r, r being the number of filters. Each filter coefficient vector Ci will be associated
with a frequency range of interest Ai C [0, 2r] such that [Al, . . , r forms a partition of the inter-
val [0, 2r]. Suppose a filter with coefficients C is to be designed for and interval AA E [Al, ... , Ar}.

It is desired that Pd(b52(Y) I e = ) be close in some sense to the optimum Pd(6g(Y) e = ) for each
0 E AA.

Definition I - Define c as the input SIR required such that 67c (Y) will have the same
P0 as b6(Y) at e = 0, i.e.,

Pd7(CY) I E = 0) = Pd(b6(Y) I 0 = ),

when Pfa = a for both tests. The log energy e(0) is given as

e(0) = log yc - log y.

Furthermore the log energy risk is defined as

r(6) = max g(0) e (0),
OEAA

where g(0) is an arbitrary weighting function.

The log energy function e(0) is the log energy required for the filter with coefficients C to per-
form the same as the optimal filter at the given frequency 0. The log energy risk is defined as the
minimum log energy needed for the suboptimal detector to perform at least as well as the 66 (Y) for
all 0 E AA. This risk can be weighted depending on the cost structure desired on the set AA. The
weighting will take the form of a function g(0). The risk can be minimized in a Bayesian sense,

6 E arg min max g(0)e(0)
6 OEAA

or this can be written in terms of the filter C,

C E arg min maxg(0)e(0). (9)
C OEAA

The log energy e(0) accurately reflects the degradation of the desired filters relative to what can
be achieved in the optimal case in a manner relevant to radar engineering. The number of filters that
can be designed by using this criterion is not constrained, nor is the frequency separation of the
filters, as the intervals A can arbitrarily be chosen. Thus, the criterion is broad enough to allow
important design parameters to be varied. Finally, the criterion is capable of being weighted by the
arbitrary function g(0), which allows it to incorporate desired cost functions such as velocity profiles.

It is interesting to compare this criterion with the maximum formulation used in many robustness
problems [12,13] in which one seeks a filter to maximize the minimum gain over a class of possible
signals and/or interference models,

max min SIR. (10)
C OEAA

This theory has been developed so that explicit solutions are available under certain hypothesis. In
our case the signal may vary by taking on different 0. This criterion is compared with the MMLE in
the Section 5 for the design of single filters.
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4. MMLE APPLIED TO THE RADAR PROBLEM

To apply the MMLE to the radar problem Eq. (1), e(0) must be determined in Eq. (9). This
requires the rules 6(Y) and the associated Pd and Pf. The most powerfull tests 6 by the Neyman-
Pearson criterion are found to be a form of the Wiener filter.

1~~~~~

6(Y) = 0 or 1 if YTR-S*I = r(6). (11)

0O <

The Pd for this test is Ref. 14

where I = I CTS l, = CtRC, Q is the Marcum Q function. We wish to find the input SIR Yc
such that the suboptimal rule 65"(Y) performs the same as the test 6(Y) for some 0 E AA. This
requires,

1 (G) Q) N/ I [- p 0 AVA ()' 21In PfJ=2n#jOA,

where , Tc correspond to the test y'C (Y) and (0), (0) to the respective 6z(Y). This amounts to

- -0 =1 0 E AA,
e(O) rc

which is equivalent to

Go-y= Gcyc
where

G() 1CTs2 (12)
-y~ CtRC

is the gain for a filter with coefficients C, and t denotes conjugate transpose. G, Gc denotes the
gains for the most powerful test and the suboptimal test respectively. Now e(0) can be determined
from

e(0) = log yc - log y = log Go - log Gc,

and substituting R 1S* for the coefficients of the optimal test 8b(Y) yields

e(o) = log STR-S* - log ICTS 2 1

Cy R C tR 

= log STR-lS* t (13)
ICTS12
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To find the log energy risk, e(0) is maximized with respect to 0. Assuming uniform costs, i.e.,
g(0) = 1 V E AA,

r(6) = max e(0)
OEAA

= CRC max-ST S*14
OEAA ICTS (14)

To find the rule or suboptimal coefficient vector C, the log energy risk is minimized.

mi C max STR1-S*] (15)
C OEA0A I CTS 12 ]*(

A filter with coefficients C is obtained when the minimum is reached (it may or may not be
unique). We call filters derived in such a manner MMLE filters. Note that the maximum over is
essentially the maximum of the ratio of two polynomials with coefficients from C or R. No general
solution appears other than a search algorithm. Numerical algorithms have been developed and are
discussed in Appendix C.

5. DESIGN FOR LOW-DIMENSION N

The results shown in the preceding section will now be used to design a detector incorporating a
single filter, when the dimension N is low. The degree to which N is considered low is relative to the
particular interference covariance matrix under consideration, hence may change for different applica-
tions.

We will consider three scenarios and the corresponding covariance matrices.

(a) The received interference is dominated by clutter introduced by rain, cloud, foliage, and the
like. The clutter is highly correlated and will be modeled as a Gaussian process with a Gaussian-
shaped clutter power spectrum. The covariance matrix can be written as in Ref. 15,

2 ~~~2 ... / 1 + p2 (T) *- p(NT) 

R | P( 1 + ax *- * \

R( p() p 2((N-)T) * 1/

where

p(kT) = e2(-kuc7 2 (17)

The thermal noise energy per dimension is ax, the clutter energy per dimension is normalized to
1, and the pulse repetition is T. The total interference energy per dimension a2 is then I + ax. The
standard deviation of the Gaussian clutter power spectrum is ac, and the normalized spectral width of
the spectrum is acT.

7
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(b) Extraneous interference in a radar return may cause one or more components to be cor-
rupted. For simplicity, one component will be assumed corrupted. It is assumed that the interference
dominates so that no useful information can be extracted from the corrupted pulses in the detection
process. The optimal solution for a fixed frequency and ith pulse corrupted is to remove the ith row
and ith column of the covariance matrix above and accordingly process the remaining pulses [16].
The operator Pi(X) denotes the vector X with the ith component removed.

c. A covariance matrix is devised in Appendix A to illustrate the Emerson procedure. This
matrix can be written as,

e
.4ir(i - 1)N

R = Xi N~ Si= . (18)
N

2,r(N- 1)i-i)

e N

where i-1 ... , N. The set [X1, * . , XNJe contains the eigenvalues of the matrix R, and the eigen-
values are assumed distinct. Note that the matrix is Toeplitz.

For each of the three cases, the Emerson and the MMLE methods are compared with the GLRT
or infinite filter bank, Eq. (6). The gain function for the GLRT is optimal for a given 0. Henceforth
it is referred to as the optimal gain. The GLRT as a detector however is not optimal when one does
not have a priori knowledge of 0. We assume that the speed of the target is unknown and is uniformly
distributed in the interval 0, 2r]. Furthermore we assume a uniform cost function g(0) in Eq. (9).
For simplicity, acT is fixed at 0.05 and C/No at 50 dB. The design goal is to be as close to the
optimal gain in the passband as possible. Considering acT = 0.05, a somewhat arbitrary passband
will be assumed between the normalized frequency (f = /27r) intervals f E [.1, .9] and f E [.2, .8]
depending on the remaining parameters. If a single filter is not sufficient to cover the passband satis-
factorily, it is necessary to either change the passband or add additional filters as discussed in the next
section.

In Fig. 1, gain is plotted vs f, for the covariance matrix, Eq. (16) for N = 4. The optimal gain
obtained by using the filter coefficients R - 'St* is plotted along with the single filter gains of Eq. (12)
based on Emerson's weights and the MMLE. It is clear, in the passband, that both single filters per-
form nearly the same as the GLRT, Eq. (6). Nearly the same performance is observed for N = 6
shown in Fig. 2, except the MMLE begins to separate from Emerson's filter at the beginning and
middle of the passband. This separation can be seen clearly for N = 8 in Fig. 3 where the MMLE
achieves at most 20 dB more improvement over Emerson's method for frequencies in the intervals
f E [.15, .35], f E [.65, .85], and sacrifices at most 5 dB in the interval f E [.35, .65]. The maxi-
min. formulation of Eq. (10) is shown in Fig. 4 relative to the MMLE and infinite bank Eq. (6) for
N = 8. Both the MMLE and maximin were optimized over f E [.2, .8]. The relatively poor perfor-
mance of the maximin is heuristically due to maximizing the minimum gain that occurs at f = .2 and
f = .8 in the interval f E [.2, .8]. This is done at the expense of the remaining passband that is
allowed to sharply degrade. A more relevant application of the maximin procedure is discussed in
Section 8.

8
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Fig. 1 - Gain-Gaussian clutter power spectrum N = 4,
acT = 0.05, C/No = 50 dB
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Fig. 2 - Gain-Gaussian clutter power spectrum N = 6,
aCT = 0.05, C/No = 50 dB
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I I I I I I I I
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Fig. 3 - Gain-Gaussian clutter power spectrum N = 8,

acT = 0.05, C/NO = 50 dB
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Fig. 4 - Gain-Gaussian clutter power spectrum N = 8,
acT = 0.05, C/No = 50 dB
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In Fig. 5, curves of the optimal gain, MMLE gain, and gain obtained by using Emerson's filter
are shown for N = 5. The third row and column of Eq. (16) are removed to account for extraneous
interference. The gain function for Emerson's filter yields a blind speed at f = .5, which could be
critical for many systems (this problem has been observed for odd N). The MMLE maintains a
nearly identical loss across the passband. The single MMLE filter again yields uniform coverage in
Fig. 6 for N = 9 while Emerson's filter produces poor results at f = 0.5.

C03
OPTIMAL

MMLE

- - - - - EMERSON

C

C-D

CD

CD

/ /_

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NORMALIZED FREQUENCY
Fig. 5 - Gain-extraneous interference P3 , N = 5, acT = 0.05, C/No = 50 dB
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0.9

Fig. 6 - Gain-extraneous interference P5 , N = 9, acT = 0.05, ClNo = 50 dB
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We now consider the covariance matrix of the form of Eq. (18). Again Emerson's method and
the MMLE are compared with the infinite bank. For N = 3 shown in Fig. 7, the eigenvalues are
chosen so that most of the interference is near zero Doppler; X = 1., 2 = 0.01, and X3 = 0.0099.
As explained in Appendix A, choosing any eigenvector of the covariance matrix results in two nulls
in the Doppler space, in our case at f = 0, f = 2/3. The gain for the MMLE design is uniformly
close to the optimal gain. The same effect is seen in Fig. 8 in which N = 5. Here X = 1.,
X2 = 0.0000999, 3 = 0.0001, 4 = 0.0001, 5 = 0.0001. These cases are based on a covariance
matrix that is designed to help in understanding the problem and may not be indicative of covariance
matrices encountered in physical processes.

OPTIMAL

- - - - -EMERSON
CO

LO

CD

C-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NORMALIZED FREQUENCY
Fig. 7 - Gain-interference matrix (17), N = 3
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Fig. 8 - Gain-interference matrix (17), N = 5
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6. DESIGN FOR HIGH-DIMENSION N

When the single filter designs of the previous section fail to achieve the desired goal, a useful
recourse is to consider the implementation of multiple filters. To compare the designs, we define the
coverage C(f) as,

C(f = max Gi(27rf), i = 1, .. ,P (19)

where G(27rf) is the associated gain function, Eq. (12) of the ith filter, and P is the number of
filters. The uniform weighting function, g(0) = 1 in the passband; g(0) = 0 otherwise, is assumed.
It is desirable to have the coverage as close in the passband to what is obtainable with the infinite
bank of filters, Eq. (6) where each filter is optimal for a corresponding frequency. The covariance
matrices that are considered are cases 1 and 2 of Section 5, that of the interference having a Gaussian
power spectrum and extraneous interference corrupting one component of the received vector. Again
we assume acT = 0.05 and C/N 0 = 50 dB.

Comparisons are made between the MMLE the N filters by Andrews, and the approximated
CGLRT with N equally spaced filters. Andrews' design for multiple filters is a straightforward exten-
sion of the Emerson's procedure. Here the, Doppler space is partitioned into N equally spaced inter-
vals, and N filters are found by maximizing the average gain for each respective interval. Specifically
the ith interval is given by

L(2i 1) (2i 1)] (20)[ 2N ' 2N 0 

where i = 0, ... , N - 1 and the units are normalized frequency. This is in contrast to Emerson's
procedure that yields a single filter by maximizing the average gain over the entire [0, 1] normalized
frequency interval. The CGLRT consists of N filters with coefficients of the form R -1S*. By parti-
tioning the Doppler space into N equally spaced intervals in Eq. (20) and by using the average fre-
quency in each interval to evaluate the signal, N such filters are derived. The MMLE is well suited
for the problem of multiple filter design, since filters are optimized over disjoint frequency intervals
Ai as described in Section 3. To meet a design goal with the least number of filters, one must deter-
mine the frequency intervals Ai. Given the same general design goals and passbands as in Section 3,
this can be done as follows. Assuming a single filter did not meet the design requirements, the first
interval Al is set equal to the interval f E [0, .5]. The MMLE is applied and the gain is determined.
If the gain is not sufficiently close to the optimal gain in the interval f E [0, .5], the interval is
decreased to f E [0, x where x is less then 0.5, and the MMLE is applied again. Changes (both
increasing and decreasing as necessary) are continued in this manner until the gain meets the design
requirements in the interval. Suppose the single filter now meets the requirements in the interval
f E [0, x], and a second filter is designed in the interval f E [x, 1] and the coverage, Eq. (19), of the
first and second filters is compared with the design requirements. This process of changing the inter-
val is continued as above (f E [x, y y variable) until the coverage is satisfactory through the second
interval. Enough filters are added by following this procedure until the passband is covered to meet
the requirements.

Figure 9 shows the approximated CGLRT vs the GLRT or infinite filter bank, Eq. (6), for
N = 10. The coverage provided in the passband is practically identical to the GLRT coverage. This
coverage is repeated in Fig. 10 in which filters are designed by using the Andrews' method. Finally
the MMLE is shown in Fig. 11 in which only four filters are used. The intervals determined by the
method above are f E [.17, .4] , f E [.4, .51; and conjugate filters are used for the intervals

13
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Fig. 11 - Coverage-Gaussian clutter power spectrum multiple filters MMLE,
N = 10, acT = 0.05, C/No = 50 dB

f E [.5,.6] , f E [.6,.83]. Here the length of the interval of the first filter is 0.23 while the second is
less then half of this at 0.1. Nonuniform lengths are important if a minimum number of filters is

desired.

Extraneous interference is considered. Figures 12 and 13 compare the CGLRT and Andrews'

filters respectively to the infinite bank. The dimension N = 9 and the middle component is corrupted,

resulting in eight pulses. The coverage provided in the passband is nearly the same as the infinite

filter bank coverage. Figure 14 shows the MMLE design in which only three filters were needed to
approximate the optimal gain. The intervals used in the design were f E [.17, .38], its conjugate filter

interval f E [.62, .83], and f E [.38, .62]. The lengths of the intervals are nearly equal.
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Fig. 12 - Coverage-extraneous interference P5 , multiple filters CGLRT,
N = 9, acT = 0.05, C/No = 50 dB
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In summary we have shown that only four filters are needed to effectively cover the passband
for N = 10. For extraneous interference only three filters are necessary.

7. ROBUSTNESS

The filters in the previous section were designed under the assumption that the statistics of the
interference are accurately reflected by the interference covariance matrix used. This may be so in
certain space based applications. However, for other applications this may not be so. In fact, the
interference matrix may change from range cell to range cell and from scan to scan of a pulsed radar.
The received signal may either possess Gaussian or nongaussian statistics. For our purposes a Gaus-
sian process is assumed and furthermore we assume that the received signal, Eq. (1) (which is at a
constant range), is wide sense stationary. The actual covariance matrix associated with the Gaussian
interference is assumed to lie within a class of covariance matrices that have a Gaussian clutter power
spectrum. The class 6M of covariance matrices is defined as

as in Eq. (16) acT E Aa, k E Ab (21)

where Aa is the set of relevant normalized spectral widths, and Ab is the set of relevant clutter to
thermal noise ratios, C/N = 1/a 2. Relationships on filter performance when C/No is varied are
presented. The robustness of the MMLE, Andrews' method, and the CGLRT filters will be examined
when they are designed at a fixed operating point of acT and C/No.

We begin with an equation derived from Ref. 7 that relates gain averaged over the entire nor-
malized frequency interval [0, 1], termed the improvement factor IF, when Emerson's method is
used,

C

I ANo c l + C (22)

I. + C I, C
No ~No

Ic represents the IF when the eigenvector corresponding to the minimum eigenvalue of the
clutter covariance matrix is used as the filter weight (C/No = oo). By use of the same filter, Ic is
the new IF when white noise is added to the clutter. By taking logarithms of Eq. (22) and approxi-
mating for C/No >> 1,

10 log Icn 10 log N - 10 log No + 1 (23)
No

If C/No << I, then 10 log I 10 log C/No. If C/No >> Ic then 10 log Icn 10 log
Ic, Hence C/N 0 is a limiting factor in the improvement factor when white noise is added. Although
this relation yields a useful result, it applies to Emerson filters and does not hold for general linear
filters. Furthermore, Eq. (22) does not tell us what happens as a function of frequency, only the
average gain or improvement factor is presented. A more general result is stated here as a robustness
theorem.
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Theorem 1 - Given a vector of filter coefficients let G(O) represent the gain, Eq. (12) for which R is
a N x N positive definite clutter covariance marix and diagonal elements a2. Assuming the same
filter coefficients, let G(0) represent the gain for which the covariance matrix is R' = R +

at I If A(0) = 10 log G(0) - 10 log Gcn(0),

_-

C

10 log D o

1 + Nl~log NC

Gma

C
N-

' A(0) ' 10 log 1 Gmax

C

No 
I

iI(24)

where Gma = maxoGc(0).

For a proof see Appendix B. If C/No : Gmax, the upper bound indicates A(8) is small. So
long as C/NO Ž: Gma, any linear filter is robust in the sense that the gain function will not change
as a function of C/No. If additionally Gc(0) is close to the optimal gain in which C/N = o, then
Gc,(0) will also be close to the optimal gain for every C/No ' Gmax. This follows, since the
optimal gain for any R' with finite C/No is less then the optimal gain with covariance matrix R. In
the case where C/No ' Gmax, Eq. (24) yields upper and lower bounds on the degradation and the
gain function will suffer. These bounds are plotted in Fig. 15 for N = 5, ucT = 0.05, and
C/No = 10, 30, 00 dB. The topmost figure is G for a single filter designed by the MMLE for
C/No = oo. The curves portrayed with C/No = 10, 30 dB represent the same filter but with dif-
ferent covariance matrices incorporating the respective white noise. The dotted line curves above and
below the C/No = 10, 30 dB curves are the upper and lower bounds in Eq. (24). The bounds hold
whether or not the interference is Gaussian.

CD

02~~~~~~~~~~~~~~~~~~~~0d

M rX--

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NORMRLIZED FREQUENCY
Fig. 15 - Robustness bounds, N = 5, acT + 0.05, C/No = 10, 30, dB
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Now we address the question of robustness for the filters considered in the previous sections.
For comparison, the filters are all designed assuming acT = 0.05, C/No = 90 dB, with passband
f E [.2, .8] and uniform weighting function in the passband. The dimensionality will be fixed at
N = 10. The degradation of each filter relative to the infinite bank of filters for different acT, C/No,
and f, will be shown.

Figure 16 is a robustness curve of a bank of ten CGLRT filters designed as discussed in Section
6 at f = 0.5. Each point of the solid lines represents an optimal filter with weighting R1S*
matched at the particular cT, C/No and f. The dotted lines are the coverage that is obtained with
the fixed bank of CGLRT filters designed with the parameters above. This filter bank is particularly
robust for C/No < 80 dB and the large range of ucT shown. On the other hand, when f = .2, Fig.
17, the results are rather poor relative to what can theoretically be achieved. In fact, there are regions
where the coverage could increase by 30 dB or more by better processing. Nearly the same coverage
is seen in Figs. 18 and 19 for f = 0.5, f = 0.2 respectively when the design criterion is Andrews'
extension of Emerson's filters. Only four filters are used in the MMLE design as shown in Fig. 20
for f = 0.5. The filters were designed by partitioning the passband as f E [.2, .25], f E [.25, .5],
f E [.5, .75], f E [.75, .8]. The filters are particularly robust at f = 0.5 for the parameters shown.
In Fig. 21 the coverage is shown for f = 0.2. As with the previous cases, the coverage is poor com-
pared with the optimal gain.

The class of filters known as Chebychev is designed somewhat independent of aCTC/No, and
f. The Chebychev filters can be characterized by their sidelobe levels and dimensionality [17]. In
Fig. 22 the coverage is shown for ten Chebychev filters, equally spaced, Eq. (20), at f = 0.5 with 90
dB sidelobe levels. The coverage is mostly identical to the coverage obtained with the previous filters.
When f = 0.2 as in Fig. 23, the coverage is much better than that obtained in the previous cases.
Unfortunately it still lacks the optimal coverage by at most 7 dB at C/No = 20 dB, 8 dB at
C/No = 50 dB, and 23 dB at C/No = 80 dB.

C/No .80dB IC/NO. OPTALj

.--------------- e- -- - - ...-.... -OahRT

_n u DESIGN PT. 7

a C/No 50 dB

CD UL

> ~~C/No 20 dB 

OZ Ln . -- - - - - - - - - - -- - - - - - - - -=

Cj

10 10- t 2 0 10 0

aT
Fig. 16 - Coverage CGLRT f = 0.5, N = 10 acT = 0.05,

C/No = 20, 50, 80, dB
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10

Fig. 21 - Coverage MMLE f = 0.2, N = 10 rcT = 0.05,
C/No = 20, 50, 80, x dB
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The problem of obtaining filters with frequency coverage nearly optimal for a particular operat-
ing point of C/No and acT has been solved. When C/No and aT are allowed to vary, such filters
have been shown to degrade relative to the optimal coverage. This is further examined in the next
section.

8. CONCLUSIONS

We have presented a design method that will produce filters capable of detecting targets of
unknown velocity. A design criterion is specified by the radar designer in terms of gain relative to
the optimal gain as a function of frequency. The method requires partitioning of the passband and
comparison of the coverage of the corresponding MMLE filters with the design criteria. Enough
filters are added as described in Section 6 until the coverage meets the design criteria. The iterative
partitioning is done in an attempt to minimize the number of filters needed. The degree of the close-
ness was explained in Section 3. The iterative partitioning will very likely produce nonuniform length
intervals.

These filters were designed under the premise of known values of acT and C/No. The case,
when these values are not known precisely, is discussed in Section 7. General bounds were presented
for a given linear filter when the clutter to thermal noise ratio is allowed to vary. The performance of
filters such as the MMLE, which require precise knowledge of the covariance matrix, was deter-
mined. This was addressed by introducting a class of covariance matrices ai in which acT and
C/No are allowed to vary. The actual design of filters that are robust within the covariance matrix
class is a remaining problem. An important step in designing such filters is to define a criterion
appropriate to this problem. Obviously the usefulness of the maximin formulations,

max min SIR
C r 
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where the maximization is over the filter coefficients C, and MMLE needs to be determined. Addi-
tionally alternative criteria [15] should be investigated.
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Appendix A

IMPROVEMENT FACTOR

The criteria of maximizing the IF (improvement factor), referred to as Emerson's criterion, is
now examined. The primary consideration is to determine when IF is a good indicator of filter per-
formance. To better understand the criteria, the covariance matrix,

1
.27r(i - 1)

e
.4r(i - 1)

s-sJ eJ~'N
R Xi I 1i S= e N'

2ir(N-1)(i -1)
J_ N

e

where i = 1, ... , N will be applied. The set [XI, ... , XNJ contains the eigenvalues of the matrix.
The eigenvalues are assumed distinct and the matrix is Toeplitz. We set the eigenvalues to
A = 1., 2 = 0.00001, 3 = 0.0000099, 4 = 0.00001, 5 = 0.00001. Note that when Gaussian
interference associated with this covariance matrix is passed through a linear filter, the IF is not
1 /Xnn, where XC, is the minimum eigenvalue. This is because the diagonal elements of R are not

1 1 yithnecessarily equal to one. Assuming the same hypotheses as in Eq. (1) IF - -- , where y is the
Y Ynin

input SIR. The solid curve in Fig. 24 is the gain Eq. (12) of the infinite filter bank, Eq. (6). Also
shown are curves obtained through the MMLE and Emerson's criteria. Emerson's criterion yields a
filter with rather poor gain response. This is because the eigenvector corresponding to the minimum
eigenvalue must be Si for some i. Every eigenvector is orthogonal to every other eigenvector.
Hence, the numerator of Eq. (12) is zero whenever the conjugate of S is orthogonal to the eigenvec-
tor. This happens N - 1 times in our example. Essentially CTS where 0 E [0, 2irj represents the con-
jugate of the discrete time Fourier transform [Al] of the coefficient vector C. Consider the z
transform EScAz -, where z is a complex variable. This equation has N - 1 roots
zi, i = 1, 2, ... , N-1. If a root is on the unit circle in the z plane z = ef, the gain will be
forced to zero at the frequency = -. Robinson [A2] showed that all the roots of the eigenvector
corresponding to the minimum eigenvalue are on the unit circle when the covariance matrix is Toe-
plitz. This may be useful if the roots are close to 0 = 0 since it will notch the clutter. However, in
cases such as in Fig. Al, much of the remaining Doppler space is also notched.

Emerson's criterion consists of finding the normalized filter coefficients that minimize the
interference output power. Equivalently the average gain or IF can be maximized. In the derivation
of Emerson's filter, we assume that the Doppler speed is uniformly distributed. Also, no weighting or
cost function of frequency exists, i.e., a uniform cost is assumed. The coarse design goal is to pro-
duce a filter that delivers favorable gain coverage under these circumstances. One measure for judg-
ing the effectiveness of such a criterion is to determine how the IF relates to the design goal. Since
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the IF is to be maximized, does a higher IF, in fact, indicate a better design? Figure Al shows that
the MMLE yields a filter design uniformly close to the optimal gain. It outperforms Emerson's filter
in 80% of the Doppler space and does not suffer the numerous holes in the coverage. Yet, for the
MMLE design, IF = 42.997 dB, and for Emerson's design IF = 43.000 dB. In this example, the IF
does not effectively relate to the design goal. To further illustrate this, examine Fig. A2 forN = 5,
auT = 0.05, c/No = 50 dB. The solid curve was obtained from a single filter design by MMLE
with passband f E [.2,.8] and uniform weighting. It was determined the IF = 43.76 dB. Also shown
in the figure by the dotted lines is a rectangular window. This window has no gain in
f E [0,-4], f E [.6,1] and performs slightly better then the MMLE in f E [.4,.6]. Obviously this
would make a rather poor filter compared with the MMLE. The IF is 43.82 dB, which is slightly
higher then the MMLE IF. Although the actual eigenvector solution performs much better, and an
actual filter that yields the dotted gain curve may not even exist, the example does help to show that
IF is not necessarily a good indicator of the design goal.

In summary, Emerson's criterion works well when applied to problems where the covariance
matrix is such that the above problems do not exist. When these problems arise, as in Fig. Al or in
the case of extraneous interference as discussed in Section 5, an alternative criterion should be
applied.

OPTIMAL

- - - !HMLE IF - 42.997
- - - - - EMERSON IF - 43.000

C

Co_

0 O.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NORMALIZED FREOUENCY
Fig. Al - Interference matrix (17), N = 5
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Appendix B

PROOF OF ROBUSTNESS THEOREM

Define the vectors S(0), Si, S' by

S(0) =
1

Si = 

1
j2ei

e

j2wi(N -1)
N

J

S! 1
e

I
j2i-
N

-j2Ti(N -1)
e N

where i = 1, 2, ... , N and 0 E [0,27r]. It can be shown that the sets (S1 , S2, ... , SN) and
fS1, S . . , S} are orthonormal bases for complex N-space CN. This additional set is introduced
for convenience in the proof of the theorem.

Lemma 1 - Let w E CN such that wTw* - 1.
the right is achieved if w a S(-Oma), where Oma,'
Equality on the left is achieved if wTS1 = wTS2 =. .

Then 1 maxelwT S(0)12 N.
is any 0, where max_ wTS(0) 12

= WTSN = 1-

Equality on
is achieved.

Proof: The inequality maxo I wTS(0) 12 c N is argued first. Since S, .., SN is a basis for CN,
we can write

w = , aiS', Iai 12 = 1

S(O) = bi(O)S, I bi(O) 1 2 = N. (BI)

Now

I WTS(0) 12 -

2

- Fab 
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but by the Cauchy-Schwartz inequality,

ai I' bj I

=N

with equality for a given 0 if and only if co a S(-0). Since I wTS(0) 12 is a continuous function over
a closed interval, the maximum exists and is realized at some ma E [0,27r]. Consequently the
preceding inequality implies maxo I wTS(0) 12 c N, with equality if c a S(-Oma,).

Next it is proven that 1 < maxo I w TS(0) 2. Since [S, S2 . . , S) is an orthonormal basis,
w = E.aiS! and therefore a = wTSi for i E [1,2, ... , NJ. Observe that SO) = XNS for

0i = 2ri/N, from which it follows that I wTS(01) = 'fai and

maxl w T S(0) 2 NKlai I
0

for all i. Hence

max l wTS(0)I max [' I a , - | a2 ..* ,KR aN l }-

To finish the argument consider two cases: (a) I ai I 2 /N for all i E (1, 2, ... , NJ and
(b) ai < LNI' for some i E 1, 2, ... , NJ. In case (a) the result follows trivially. In case (b)
lai 1/N for at least one of the subscripts i E 1, 2, . . ., NJ; otherwise E, Iai 12 < 1,

which is a contradiction. Therefore the maximum on the right-hand side is at least as large as 1.
Hence

max w TS(0) 1
0

and consequently

max I wTS(0) 12 > 1.

Finally equality on the left is argued if al = a2 = ... = aN =1/@:

max I wTS(O) 12 = max ai(Si) S(Ol 2

- max | [S(S
1
)Tj [E bj(0)SJ] 2
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where bj are as in (a). By orthonormality this becomes,

- ± maxL bj(0) 1.

Applying the Cauchy-Schwartz inequality,

<kmaxr Ibj(0) 2 =1.

The result follows since max w TS( 0) 2 J 1.

Proof of Robustness Theorem:

Using the definitions of Theorem 1 and without loss of generality, we assume the filter vector w
satisfies wTw* = 1. Then,

A(6) = 10 log GC(0) - 10 log Gcn(O)

= 10 log I W[ S(:) 12

= 10 log TYcn

= 10 log -2E 
'YC 

v tR'w

wtRw

-10 log [I IwTS(0 12

]0
U2+ C1

No

I
w tRwj

where the input SIRS corresponding to the covariance matrices

1
Ycn =

of over [0,27r]. Thus the maximum of

R and R' are yc = 2 - and

, respectively. Note that G is a continuous function

some 0 in the interval denoted by u, and

Gmax = max G,(0)
0

= G(Ol,)

1 lwS(Om)i2

7c wtRw
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This can be rewritten as

max I wTS(O) 1 2 = WTS(Omax) 12 = ycGmaxWtRW.
0

Applying the lemma yields the inequality

1 'ycGmaxwtRw < N,

or equivalently,

ycGmax 1 < cGma,
N w tRw 

since R is positive definite and yc > 0. Combining this with Eq. (B2),

10 log ['Ycn +
'YC

2
a1 Yc 1 1

CGmax

No Ji
' A(O) 10 log

C

'Ycn No
or since N

Yc C + 1
No

C -

l0 log Co 1+ 1 a

No No

' A(O) < 10 log

C
_o 

1 +ANo
[1 +

I

1 Gmax
C

N 0 -
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Appendix C

COMPUTATION OF MMLE FILTERS

The computation of

min Ct RC max STR 1 mm L OEAA I CTSI12 J
and the corresponding C is important since, to the authors knowledge, a general solution has not been
found. However, a number of numerical methods are available to compute this. Two algorithms are
briefly mentioned here, the first based on simulated annealing, the second on a deterministic method
called the directed reduction method.

The simulated annealing algorithm [Cl] involves an energy function

EliJ = mn [CfitRCi m. I CliS 1 ]'

and temperature,

Tji = log(l + i) i = 1,2,....

where Eric is the energy, Cti} is the filter coefficient vector, and T(ij is the temperature at time i.
The inner maximization over 6 can be approximated by uniformly partitioning 0 E [0, 2 r] and discre-
tizing 0. Denoting this discretized set as AA = 01, 02, S] the function becomes

El = in Cfif RCfi max Rl -S* (Cl)
Lfi OEAA, I C[i]T 1 21

For the examples shown in this report S was between seven and ten. This value, however, may
need to be increased if the covariance matrix is complicated or N is large. New coefficients C' are
computed as,

C' = Cti + Vi1

where V~iJ is a vector of values at time i where each component, at each time, is chosen randomly by
a zero mean ilD Gaussian distribution with variance proportional to T[i}. The change in energy is
computed,

AE = Eli + 1 - Etil.
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C,
If AE < 0 the new coefficients are accepted, Ci + 1 = -- C I AE

(C 9T(C be fLEŽ h oefcet
are accepted with probability p,

-AE

p = e TTji)

i.e., a random number r is generated uniformly in the interval [0, 1] and if r < p the coefficient vec-
toris U +11 

tor is Ci + 1 = (C9T(C)*' otherwise Ci + 1 = Ci], Eli + 1 = Eli]. This is continued

until the temperature is reduced to the point where the energy reaches steady state. Simulated anneal-
ing algorithms such as this are fairly effective and easily programmed. Most filters designed in this
report took between 10 and 60 min of running time to approximately reach steady state on a Sun 3/60
computer. The running time is very sensitive to the initial conditions so it is best to make a good
guess before beginning. Typically filters of the class R -S* with the particular 0 E AA' that minimize
Eq. (Cl) are useful for this purpose.

The faster directed reduction method was devised as described. For each of the Oi E AA'
optimal R lS* filter coefficients matched at that frequency are predetermined. Denote these coeffi-
cients as (C1 , C 2 , ... , Cs] that are optimal and correspond to t0j, 02, .. , OS] respectively. At
each step i, the energy is computed in Eq. (Cl). Suppose the inner maximum occurs at
o = 01 E (1,2, . . ., S}, the new coefficients are then determined as

C' = Cti] + kC,

Ci + 1 = Cr

where Cl is the optimal weighting corresponding to 0. Note that the overall energy Eq. (Cl) may
increase or decrease because of this change. It should be monitored to see if steady state is reached.
This algorithm is not particularly sensitive to the initial conditions relating to the time to reach steady
state, assuming the algorithm converges. It is, on the other hand, less stable than the simulated
annealing algorithm, and the initial conditions are important for convergence to occur. The parameter
k controls the speed of convergence and is related to the algorithm's stability. If the value is too
large, the algorithm may be unstable. For the applications in this report 0.01 k 0.0001. The
filters designed for this report took between 1 and 15 min of running time to approximately reach
steady state on a Sun 3/60 computer.
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